
7 AD-A13 AND CINCINNATI UNIV OH DEPT OF MECHANICAL 
AND INUSTRIALETC 

F/G 12/1
MLTIAODY SYSTEM DYNAMICS WITH CONSTRAINTS: THE 'CLOSED LOOP' P--ETCIU)

JUNCLASSIFIED UC-MIEOAAIADD-2-ONR NjLE h J KMMN LH ESON h h h h EI-C019ENsoEEEmonsooE
MEEKl -f



\4

CI ULTIBODY SYSTEM DYNAMICS

WITH CONSTRAINTS: THE )4CLOSED LOOPd PROBLEM

"II

/J

/J

James W. Kamman

and

Ronald L. Huston

Department of ..echanical and
Industrial Engineering ,

Location 72 -. '-

University of Cincinnati AU ... . ..

Cincinnati, Ohio 45221 -

. Technical Report for Office of Naval Research

Contract N0014-76C-0139W

81 819 103



ABSTRACT 

The governing equations for constrained multibody systems

.1rc ::c-aced i: " .,:;c .IZiD . " lioeir aut,:.L...A, n:.. L L.

eveiopment and soLution. Specifical1v, the lcic..ac "oop" nroDecn

, ;u nuti>'dv chain svsteOs i dre ssed.

The governing equations are developed by modifying dynamical

equations obtained from Lagrange's form of d'Alembert's principle.

T'is :odification, which is basod upon a solution of the constraint

equations obtained through a "zero eigenvalues theorem," is, in

effect, a contraction of the dvnamical equations.

It is observed that, for a system with n generalized coordinates

and m constraint equations, the coefficients in the constraint

equations may be viewed as "constraint vectors" in n-dimensional

space. Then, in this setting the system itself is free to move in

the n-rn directions which are "orthogonal" to the constraint vectors.
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INTRODUCTION

this report presents a formulation of the governing equations of

constrained multibody systems. The objective is the establishment of

procedures for the automated generation of the equations.

Recently there has been an increasing interest in the efficient

development of governing dynamical equations of multibody systems. This

interest is stimulated by the fact that many physical systems can be

0. 1-:'t, S , --.2C t- 2 . . .- .. ..

physical systems of interest are robot-;, manipulators, human odv models

and biodynomi: 'n... tems , 'nc exible cables -r ,uns.

There have been a numoer !: for'nuications of t!:e or:. utions of no: >-n

of multibody systems [1-19]*. The majority of these have been restricted

to "open chain" or "open tree" systems: that is, systems of rigid bodies

such that adjacent bodies have at least one common point and such that

no closed loops are formed. Figure 1. illustrates such a system. The

formulation of the governing equations of motion of such systems has

advanced to the point where the coefficients of the governing differentiai

equations can be formed automatically (numerically) by simply knowing the

connection configuration [10-12].

&However, during recent years, there has also been interest in the

dynamics of systems possessing closed loops, where some of the branches

of the tree or chain are connected. Figure 2. illustrates such a system.

These systems are useful in modelling such physical systems as: closed

Numbers in brackets refer to References at the end of the report.
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Figure 1. An Open-Chain Multibody System.
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Figure 2. A Multibody Chain System with Closed Loops.
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mechanisms, "docking" manipulators of spacecraft, ship cranes, restrained

human body models, and cables anchored at both ends.

As noted above, this report presents a procedure for the automatic

formulation of the governing equations of such closed-looc multibdy

systems. The procedure is based upon Lagrange's form of d'Alembert's

principle as exposited by Kane et. al. [14,20-22] and as used in [9-12]

to develop the dynamical equations of motion. It is also based upon a

zero eigenvalues theorem" as exposited by Walton and Steeves [231 to

provide an automatic inclusion in the analysis of the constr.int equations.

The balance of th* re.-ort itself is divided ifnc i.': ;arts vi. the

following part providing some preliminary information useful in the sequel.

This includes a review of dvnanic.Ai formulations of multibo3- systems and

a statement of the "zero eigenvaiues theorem." This is followed in the

next part by the governing equation formulation for constrained or closed-

loop multibody systems. The subsequent part presents a simple example.

The final two parts discuss generalizations and other features of the

formulation.

PRELIMINARY CONSIDERATIONS

Coordinates and Kinematics

Consider again the multibody system of Figure 1. This system will

have, in general, 3N+3 degrees of freedom where N is the number of bodies

of the system. These degrees of freedom might be delineated as follows:

Arbitrarily select a body of the system as a reference body. Call this

body B Next, label or number the remaining bodies of the system in

ascending progression away from BI through the branches of the tree

4



structure, moving clockwise from branch zo branch. Then the orientation

of BI relative to a fixed (inertial) reference frame R together with the

orientation of the remaining bodies of the system relative tc their

adjacent lower-numbered bodies defines 3N degrees of freedom. Finally,

the location of an arbitrary reference point in B relative to R defines

an additional 3 degrees of freedom.

The position and configuration of the system can thus be described by

3N+3 generalized coordinates x . Let y (Z=I,... ,3N+3) represent their

time derivatives*. Next, let n. (i=l,2,3' represent a mutual!y perpendicular

vocztor set fixed i2 .. rt represunt the center cf boi.v 1.

(k=l ,...,N). Then, it has been s.own 120,211 that the velocity of G, in R

and the anguia: velocity of B in R mav e <xrassed in the for-i:
k

Yk = v. vn and Wk =k "kyn (i)

(Regarding notation, a repeated index, such as Z or m in Equation (1)

represents a sum over the range of that index, unless otherwise stated.)

The coefficients Vk m and .km in Equation (1), and their derivatives,

play a central role in the analysis of the sequel. They are components of

the so-called "partial velocity" and "partial angular velocity" vectors:

Vk/3y and ;wk/ky . These vectors are useful in forming the generalized

* * The reason for using the symbol y ; instead of xZ is that there exist

instances when a convenient choice of generalized coordinate derivatives

result in functions Yv which cannot be integrated to obtain the coordinate

X,. In such cases, the x1 do not, in general, exist (and are sometimes

called "quasi-coordinates"). This occurs, for example, when the v, are

selected as angular velocity components. See [24].



active and inertia forces of the system. the coefficients vkm and wklm

and their derivatives may be formed bv simple multiplication algorithms

as developed in [9-12]. Hence, by differ--n:iating in Equation (1), the

acceleration of Gk in R and the angular acceleration of Bk in R may be

expressed as:

'k = (+ktmYZ + vkZtm )nm  and 'k = (ukimYZ + kZmYz)n m (2)

Equations of Motion

Consider the system in Fi;-.: . ce subjcct'-u to an :crnailv

applied force field which may be represented on a typical body B, by a single
k

force Fk passing throu.;h Gk together with a couple wi:h torque M4 . Sinilarly,

let the inertia force system on S be represented by a single force F*
k -k

passing through Gk together with a couple with torque Mj, Then F* and

may be expressed as [21]:

Fk*= -mak (no sum) (3)

and

-'k ' - k x (I k (no sum) (4)

where mk is the mass of Bk and Ik is the inertia dyadic of Bk relative to

G k ' Through use of orthogonal transformation matrices [10] Ik may be

expressed in the form:

1k = Ikmnnmn (5)

Lagrange's form of d'Alembert's principle then leads to governing

dynamical equations of motion of the form [211:

6
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F. + F* = 0 Z = 1,... 3N4-3 (6)

Ahere F is ca-e en r al er Ziz-d ac:.:ve :orce" and - "e *-2'p!'essec as:

77 V (7)
Vk~mFkm km m

where there is a sum from 1 to N on k and from 1 to 3 on m, and where

F and Mk are the n components of F and Similarly, F*, in Equation
km Mkm -M ~k L1k-

(6), is called the "generalized inertia force" and may be expressed as:

F* = v. F ..)

where there 13 a sum from I to N on k and frm 1 to 3 on ,, ;nd where

a; and M are the n comnonents of F* and Mk.

:.stit:iting from Equaticn i 1' , f'5) into (7) and m

finally into (6) leads to the equations of motion which may be written

in the form[10]

a = = 1,... ,3N-3 9)
q-q

where there is a sum from I to 3N+3 on q and where a and f are given by:

a = v v +1I . i
'I q 'mkk,'m kqm kmn k,m kqm

and

f F V k-nvkv mv + Ikmn :-'u v
f.F - (.v, 'nkum'u krnnk~nkun u

+ e nmhIkmr'kun, ksr~k, nYuvs )  (ii)

where there is a sum from 1 ti, N on k, from 1 to 3N+3 on u and - and from

I to 3 on the other repeated indices and where e nmh is the standard permuta-

" 4 tion symbol [25].
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Constraint Ecuations

E1uaticns (9) represent the generil governing dynamical 'q oations

for open chain or open tree systems. However, if the system has one or

more closed loops, as illustrated in Figure 2., there are additional

equations which need to be satisfied to insure that the closed loops are

maintained throughout the motion of the system. These equations are

holonomic constraint equations [21] and they may be written in the form:

.= 0 i = i... m : m < 3N+3 (12)

(These equations mav be obtained bv simnlv adding to zero the ralative

rosition vectors of the connectin joints around the respective loops.)

It should be :teJ ths-t constraint equatiois of the f -:- of Equation (12)

can arise in ways different than that of the closed loops mentioned above.

This can occur, for example, with restrictions on the motion at a joint or

with the anchoring of one or several of the bodies to a fixed frame R.

Finally, by differentiating, Equation (12) becomes a linear relation in the

y, and may be expressed in the form:

b.v. = 0 i = 1,... ,m; = ,...,3N+3 (13)

where the b., are, in general, functions of x and t. Equations (9) and

(13) thus constitute the governing equations for a "closed-loop" system.

These are co be cast into a solvable form in the sequel.

Zero Eigenvalues Theorem

For a constrained N body chain svstem, the n dynamical equations (9)

together with the m constraint equations (13) constitute n+m equations for
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the n unknown v, where n is 3N+3. Hence, the system is over determined.

One approach to overcomine this difficultv is to solve Eauations (13)

for m, say the last m, of the y,* in terms of the first n-m y. as "independent"

generalized coordinate derivatives, the partial velocities and the partial

angular velocities can be expressed exclusivelv in terms of these V, [21].

Finally, by following the procedure suggested by Equations (6), (7), and

(8), n-m governing dynamical equations are obtained for the y1 (Z=1,.. ,n-m).

Although this approach is suitable for relatively small systems,

u' E are L L fo: -. it L- ar e s-s-e::. - . r -

ctemptino to autc..rate It. Amon- these di: .culties is the probiein of

obtaining a cons..stent soiHti.: f quations (13) for i- ,-n he v, inf terms

of the remain n - '" .iot .:.2 , t is the problem of :a I Ir. , -1 v

eliminating these m y, from the partial velocities and the partial angular

velocities. However, in 1966, while working on a constraint problem of a

different conte:<t, ',alton and Steeves [23] developed an automated procedure

for solving equations such as Equations (13), for m of the y, in terms

of the remaining independent n-m y.. An extension of their procedure can

be developed to automaticailv eliminate .m of the y, from the -artial velocity

and nartial angular velocitv vectors. Their procedure and its extension are

based on a "zero eigenvalues theorem" as outlined in the following oaragraphs:

Consider Equations (13) to be written in the matrix form as:

BV = 0 (14)

where B is an --i.':n rectangular matrix with elements b. and v is an n
9.
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element column matrix with elements v.. From B form the nx n symmetric

-atrix S defined is:

S = B'B (15

where B is the transpose of B. Since S is symmetric, there exists an

orthogonal matrix T such that:

TTST = A (16)

lre i x n di .2:Xii matrix wit;i r i .ents JO "einiUds

(iJ= ....,n) [26]. These eicenvalues are readily seen to be non-negative

as foi!ows: Let v be a typical c, jmn of 7 and let w be By. Ten w - "&Bv =

7 T
.ut " . and by Equation LL6. . s ;een to 'e an . e,-

.,, say N.. Hence, ,. > 0. It is also readily seen that there exist zero

eigenvalues: Since B is an mxn matrix, its rank is less than or equal

to m [26] . Then bv Equation (15), the rank of S is also less than or equal

to m. But, since m <n the rank of the nx n matrix S is less than n.

Let the columns of T in Equation (16) be arranged so that the eigen-

val-es of S, or the diaconal elements of ', are ordered. That is. arranoe

T such that ",> 2" . . (From the preceeding argument, the last .

of these will be zero, where p > n-n.) Next, let the mxn matrix D be

defined as:

D = BT 17)

Then, from Equations (15) and (16) it is seen that:

T
D'D = (10

• 1O



Hence, since the last p rows (and columns) of * are zero, C may be written

in the partitioned form.:

D = [D! 01 (19)

where D is an (n-p)x(n-p) matrix with mutually orthogonal columns, and

where n-m < p < n. By noting that TTT is the nx n identity matrix, the

constraint equation (14) may be written as:

T D,Dv = DTT V = DTZ = 0 (20)

wiiere z is the n element column matrix defined as TTy. In view of Ecuation

(19), the final equality in Equation (20) is satisfied if the first n-p

ele2nents of z are -ero, irre7ective of the values o-7 the last n elements

of z.

Since T is orthogonal, the definition in Equation (20) may be

"inverted" leading to the expression:

v = Tz (21)

However, since the first n-n elements of z are zero, v may be rewritten as:

y = Tz (22)

where T is the nxp matrix whose columns are the last p columns of T.

(In view of the ordering defined ibove, these columns are the columns of 'r

associated with the zero eigenvalues of S.) Thus, Equation (22) provides

a solution to Equation (14) for the n v, in terms of the n independent (the

last p) elements of z. Moreover, Equation (22) is an "algorithmic"

expression in that standard numerical procedures exist for matrix diagonal-

ization, eigenvalue determination, and hence, for the numerical evaluation

A
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of the nx p matrix T.

7n index notationc E.. tion (22) may ...... ten as:

v = *rr =1 . "" r =1, ,p (23), ..- r r . . . "'

\'nere the t ,r may be thought of as components of the column ei;envectcrs

t in n dimensional space.

Finally, the formal statement of Equation (22) constitutes the "zero

eigenvalues theorem" [231.

GOVERNING EQUA, L NS

r: -rcedures outline,, , can 'e used to svstematical>v fornulate

the solution to the multibody system dynamics equations (9) subject to the

constraint equations (13). To develop this formulation, consider again the

partial velocity and partial anvuLar velocitv vectors discussed above.

From Equations (1) and (23) the velocity of G in R and the angular velocity
k

of Bk in R may be expressed in the form:

V v, ,t n and t, -n (24)

Y ,r r m -k .r r-m

where the z (r=l,... ,p) may be viewed as new generalized coordinater

derivatives. The partial velocity of Gk in R and the partial angular

velocity of D in R, with respect to z , then become:

'V /-)z = v t and )k !:z= 1mt (25)
r km .rnm -k r km 2rnm

Hence, the generalized active :iud inertia forces of Equations (7) :ind

12



(8) become:

r klm r km klm tr km

and

F*= v,, t F* + t M* (27)
r km Zr 'Im l',. Zr m cr (km

Then, from Lagrange's form of d'Alembert's principle, the governing

equations (6) become:

F, F*=0 r= . (3'

or, more specificaiv:

L; Or , r

where a and f, are given by Equations (10) and (11).qI

Equations (29) together with the constraint equations (13) constitute

the system of eq,-ations to bc solved. A numerical procedure for their

solution can be formulated as follows: Consider the general case where p=n-m.

Then, by differentiating, the constraint equations (13) become:

, - y .... * (30)

Equations (29) and (30) form a total of n equations for the 2n unknoxwns

y, and x,. Hence, there needs to be annexed to these equations the expressions:

- ,n( I)

for the consistent numerical formulation of the -,overninc equations. (If

the v are Thosen such that the x do not exist, as mentioned earlier,

13



then Equations (ii) must be replaced by analogous expressions relatina

v t,. other variables (such as Euler oarameters [10] whicn define the

relative orientations of the bodies.)

The balance of the numerical formulation of the solution of Equations

(29), (30), and (31) is now routine: t is 2erhaps most conveniently

expressed in matrix notation. To this end, let C be the nxn matrix

containing the coefficients of in Equations (29) and (30). Then, in

partitioned form C is:

I q qr r = 1,.... ,n-m

--- -,m (32)
i 2, , = 1

LSmilarlv, let the ridhE sides of Equations (29 and (30) be combined int'

the column matrix f, which in particioned form is:

7f,t, -i
f r r = ,... ,n-m

f .....-- i = 1,... m (33)
Lbi,!yJ = 1,.... ,n

Then the governing equations to be solved may be expressed in the relatively

compact matrix form:

v=C and x = v (34)

where x and v -are the column matrices with elements x and v, ( = 1...

respectivelv.

14



For a simple example illustratLiag some of these ideas, consider the

planar triple pendulum shown in Figure 3. The three rods are identical

having length , and there are friccionless pins at the joints: 01, 0

and 0 . The system has 3 degrees of freedom which may be described by

the orientation angles @1, 92, and 93 shown in the figure. Using Lagrange's

form of d'Alembert's principle, the equations of motion of the system

-- ] 6C 3) 1 + !O + 9C -_ 6r ± 3C2
2 3 2+3

+ (2 3C + I, 2. = -(g/Z)(15S + 9S + 3S
3 4.-4' 1+2 1+2+3'

* * 2-(9S 2 + 3S2+3)- + (9S 2 - 3s3 )(61 + 2

+ (3S 2+3 S 3S3) - 3' (35

2" + 3"3

(10 9-9C, + 6C + 3C,. + (10 6C + (2 + 3C3 3 3) 3

..9

-WO +2 + 3S 1+2+3 - (9S2 + 3S2). 1

-3S3 + )2 + 3S0 + +  (36)

and

(2- 3C3 + 3C+3 ) 1 + (2 + 3C3 )er + 293

= 3(g, S1+2+ 3 2- + 3 - 3S+1 3 + ") -  (37)

where C. = cosi, Ci+j cos(i + .), etc.

15
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Y0

Figure 3. Planar Triple Pendulum.

16



A "closed loop" or constraint may be formed by fixing the end point

P of the pendulum. Pence, let P be fixed at a point P havinw ,-oordinates
a

(a,b) relative to the X-Y coordinate system shown in Figure 3. This

constrained system has only one degree of freedom. Two scalar constraint

equations relating the coordinates 61, 2, and 03 may be obtained from the

position vector equation:

002 + 0203 + OP ° P0 + O = 0 (38)

That is, consi.:!zrin horizonral . .t o: this

equation leads to the equations:

-S + =a/2
1+2 C-2+3 (39)

1 1 + C1+2 + C1+ 2+ 3 =b/

which, upon differentiation, become:

(C 1 + C1+ 2 + C1 +2+ 3 ) 1 + (C 1 + 2 + C1 +2 3 ) + C1+2+33= 0

(40)

(S1 + + S + (S1 +2 + S 4-2+ 3)e2 + S0 2 - 3

Equations (39) and (40) represent Equations (12) and (13) in the foregoing

analysis.

To simplify the analysis, let P be fixed on the X-axis at a point Po
&0

a distance Z from 0 . The system then takes the form of a rhombic linkage

as shown in Figure 4. In this case, a=,, b-O, and the constraint equations

(39) are seen to be satisfied by the relations: 92 - i/2-e and 3 = 7/2+;I"
1 3

The coefficient matrix B of Equations (13) and (40) may then be expressed as:

4
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Y

Figure 4. Constrained Triple Pendulum.
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F0 -CI  -c1!
B =(41)

LI (-S 1
) 

-S

The matrix S of Equation (15) then becomes:

1 (1- s) 1

S = ( S 2(i S (1 1 I (42)

-sI  (1 -s )

T- i r-adiiy seen that S has one 7er o eiganvalue and that the associated

eigenvector array T .s:

T 1] (43)

The governing equations to be solved may now be obtained using Equations

(29) and (30). From Equations (35), (36), (37), and (40), these become:

(16 + 9C + 3C3 + 6C )e1 + (2 + 9C2 + 3C3 + 3C2+3)92

2•23 2

+ (2 + 3C2+3) = -(g/4)(15S1 + 3S 1+2+3) - 3S 2+31

+ (9S - 3S3)(1 
" 82) + 3S 2+3 2 +  3)2  (44)

2 1 1-2 $ 2+13 1 2 3

-Ce 2 - C1 3  S 1 2 + S 1  3  (45)

and

5 (I - SI)e - S9 = -CI 9 1 3  (46)

19
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Equations (44), (45), and (46) have been solved numerically. The

results :atch the results of the numerical solution of the pendulum

equation:

4- (6g/52)sinl = 0 (47)

which is the governing equation of the rhombic linkage of Figure 4.

REDUCTION OF THE NUMBER OF GOVERNING EQUATIONS

A principal step in the foregoing formulation as well as in the aboe

exampLe is the differentiation of the constraint equations (See Equations

(36), (45), and (46).). Since these equations are then combined with the

reduced set of dynamical equations and the resulting system is integrated,

a question which arises is: Is it necessary to first differentiate and

later integrate these equations? That is, could some computational

efficiency be obtained by avoiding the differentiation-integration steps?

The answer to these questions is that it is indeed possible to integrate

fewer equations and thus obtain some computational advantages. A procedure

demonstrating this is outlined in the following paragraphs:

Let the mx n matrix B in Equation (14) be partitioned into two

submatrices as:

B = [B B (48)
a b

where B is an mx (n-m) array and Bb is an mxm square array. This
ab

partitioning of B induces a partitioning of the y array in Equation (30).

20
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That is, if Equation (30) is written in the matrix form as: By = -By,

then By -a% be expressed as:

By = [B B -by (49)
a bL

where Va is a column array with n-m elements and Yb is a column array with

m elements. If Bbl exists, Equation (49) may be solved for Y in the form:

B= -bl (Ba + by) (50)

Similarly, let the reduced set of dynamical equations (29) be writn

in the matrix form A v = f where A is the (n-m)xm array with elements r a
rq a.;

r=l.,,.,n-m; :=i,...,n and f is the column array with elements f.

r=l,...,n-m. Then following the pattern of Equations (48) and (49), let

the dynamical equations be written in the partitioned form:

[A Ab f (51)a

LbI

where A a is an (n-m)x(n-m) square array and Ab is an (n-m) xm array.

By substituting from Equations (50) and by matrix block multiplication,

Equation (51) becomes:

Ay + AD[-Bb (BY + By)] = f (52)

By rearranging the terms, this equation may be written as:

Ay a  f (53)

aa

where A is the (n-rn)x (n-rn) square arrav defined as:

21



A= A a aAb'b'a (54)

and f is the (n-m) element column array defined as:

f f + AbBbiBy (55)

Equation (53) is equivalent to a system of (n-m) scalar differential

equations containing 2n unknowns: yz and x,, Z=l,...,n. Hence, there

needs to be annexed to this system an additional n+m scalar equations.

Equation (31) provides n of these equations. In matrix form they may be

written as:

x V (56)

The final m equations may be obtained from Equations (50). However, .nlike

Equations (53) and (56), Equations (50) are algebraic equations and do not

need to be integrated. That is, the system of 2n equations of Equations

(50), (53), and (56) contain 2n-m differential equations and m algebraic

equations for the 2n unknowns y. and x,, Z=1,...,n. This is a reduction of

m differential equations from the previous system of Equations (29), (30),

and (31).

DISCUSSION

4

At this point there are several comments and observations which might

be helpful. First, in the procedure of the .-erc eigenvalues theorem, the

m constraint equations are solved for the n y in terms of n-m new variables

z . Interestingly, in the subsequent formulation of governinz equations,*r

• - these new variables z do not appear. Indeed, it is only the coefficients
r

22



t, of the z which are used. As noted earlier, these coefficients are the

components in n-uimensional space of the eigenvectors t associated with Ule

zero eigenvalues of S. However, in this context, since the corresponding

eigenvalues are zero, St is zero and the eigenvectors t are thus~r ~r

"orthogenal" to the rows of S. This in turn means that these eigenvectors

are orthogonal to the rows of the constraint matrix B. (This conclusion

was also reached in an earlier analysis of constraint equations in

n-dimensional space [27].) Hence, let the rows of B be thought of as

"7onstraint vectors" in n-seion-aI 1e. Then. since the t are used.

to form the new partial veaoeizv end partial an:-iar velocity vectors, the

physical syste can oe >,nsidered t, - constrained to rov . in n-dimension.;

;nace, in directici's rrtio<:,na! to these constraint vectors -- that is.

in directions defined by the eigenvectors t r~r

Next, Lagrange's form of d'Alembert's principle is an ideally suited

method for formulating the dynamical equations when there are accompaning

constraint equations. Indeed, the governing differential equations may be

developed by simply contracting the dynamical equations obtained, via the

principle, by using the t-k array obtained from the zero eigenvalues theorem.

This procedure is seen to be successful since the generalized forces are

linear, homogeneous functions of the partial velocity and angular velocity

vectors, which in turn, are coefficients of the generalized coordinate

derivatives (in the velocity and angular velocity vectors). Therefore. a

modification of these de i',atives directly changes these vectors and hence,

also the generalized forces. This means that the modification procedure

for the generalized coordinate derivatives, as developed by the zero eien-

values theorem, may be directly applied to the dynamical equations them-
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3elves. Also, due to these argun:enrs, it is seen thit this procedUre Would

not necessirilv be succssful if the dynamical eOcuations were obtainrd bv

some other method. (Additional Iiscussi-n of the merits of La4ran2e's form

of d'Alembert's principle may be found in iLeferences [i0,1A,20,21,12].)

Finallv, the procedure developed herein is deemei to be well suited:

for the automated development of the governing equations. Numerical

algorithms are currently being prepared to be incorporated into the computer

codes discussed in [10,11,121. Additional information on this may be
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